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The two-particle cluster approximation of Strieb, Callen, and Horwitz is extended to ferromagnets and 
paramagnets with nearest- and next-nearest-neighbor exchange, with particular reference to EuO, EuS, EuSe, 
and EuTe. Curie temperatures, magnetization curves for general values of the applied field, susceptibility, 
spin-correlation functions, energy, and specific-heat curves are calculated. Using the values of the exchange 
constants of EuS obtained from low-temperature spin-wave analysis (and no adjustable constants) we find 
excellent agreement with the observed Curie temperature, very close agreement with the observed "para
magnetic Curie temperature," and very good agreement with the X-like discontinuity in the specific heat 
near the Curie temperature. The magnetization data for arbitrary applied fields and the susceptibility data in 
the paramagnetic region also can be fit closely with these values of the exchange constants. To explore the 
sensitivity of the theory to the exchange constants, the results of the cluster approximation are given for 
various ratios of the first- and second-neighbor exchange constants, including the special case of vanishing 
second-neighbor exchange (in this latter case the approximation generalizes the constant-coupling approxi
mation to arbitrary spin). We find that all the presently measured magnetic properties are rather insensitive 
to the particular choice of exchange constants, provided that these are chosen to be consistent with the ob
served Curie temperature; measurement of the spin-correlation functions, however, would provide a sensi
tive criterion for the choice of exchange constants. 

1. INTRODUCTION 

A VARIETY of methods existf or the statistical-
mechanical analysis of a ferromagnet: some 

rigorous in restricted temperature regions (spin-wave 
theory, Opechowski series expansion), some approxi
mate, powerful, and relatively complex (diagrammatic 
series summations, Green function methods), and some 
whose chief advantage is simplicity (small-cluster 
approximations). The simplest of the latter class, the 
Weiss molecular field theory, is in fact the work-horse 
of magnetism, providing a convenient and qualitatively 
reasonable theory of those properties (such as the 
magnetization) which are the sum of single-spin contri
butions. However, those properties which depend on 
two-spin interactions, or spin correlations, are beyond 
the reach of the Weiss theory. The various small-
cluster approximations (Oguchi two-spin cluster, Bethe-
Peierls-Weiss method) attempt to extend the Weiss 
theory, but they characteristically exhibit internal 
inconsistencies, such as the anti-Curie temperature of 
the Bethe-Peierls-Weiss theory. However, the "constant 
coupling'' approximation of Kasteleijn and van 
Kranendonk1 (which can be viewed as a two-spin 
cluster approximation defined for systems with nearest-
neighbor interaction only) is distinct among the cluster 
approximations in that it is at least self-consistent. And 
in fact this method is widely used as the most convenient 

* Supported by the U. S. Office of Naval Research. 
1 P. W. Kasteleijn and J. van Kranendonk, Physica 22, 317 

(1956). 

simple theory of correlation-dependent properties of 
nearest-neighbor systems. 

A rigorous cluster expansion for the Heisenberg 
ferromagnet has been derived recently2 by Streib, 
Callen, and Horwitz (SCH). The leading term of the 
SCH series is the Weiss molecular field, and the two-spin 
cluster term becomes identical to the constant-coupling 
approximation for the special case of nearest-neighbor 
interaction. However, whereas the constant-coupling 
approximation is restricted to nearest-neighbor inter
action, the SCH two-spin cluster approximation 
provides a simple, convenient procedure applicable to 
arbitrary types of exchange interactions. In this paper 
we evaluate and study the SCH two-spin cluster 
approximation for the physically interesting case of 
ferromagnets with nearest- and next-nearest-neighbor 
exchange. 

The Heisenberg model with first- and second-neighbor 
exchange is of particular interest because of the applica
bility of this model to the europium chalcogenide series 
(EuO, EuS, EuSe, EuTe). These salts are simple 
insulators with the Eu ions on a face-centered cubic 
lattice. The nearest-neighbor exchange is positive 
whereas the next-nearest-neighbor exchange is probably 
negative throughout the series. The oxide and sulfide 
are ferromagnetic, whereas the negative second-
neighbor interaction dominates in the telluride. In the 
selenide the balance is so close that a small applied field 

2 B. Strieb, H. B. Callen, and G. Horwitz, Phys. Rev. 130, 1798 
(1963). 
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induces ferromagnetic ordering, although the zero-field 
ordering is still uncertain.3 

When applied to the oxide and sulfide the two-particle 
cluster approximation gives magnetization curves below 
Tc and susceptibility curves above, specific-heat curves 
through the A-like anomaly at TCy the ferromagnetic 
Curie temperature Tc, and the "paramagnetic Curie 
temperature" 0. For the selenide it provides magnetiza
tion curves in the presence of ferromagnetically aligning 
fields below TN, and for the selenide and telluride it 
gives susceptibility curves, Neel temperatures TV, and 
"paramagnetic Neel temperatures" 0. In addition the 
theory provides spin-correlation functions for the 
analysis of neutron scattering, magnetostriction, or the 
magnetic contribution to the thermal expansion 
coefficient.38, 

A considerable amount of experimental data on the 
europium chalcogenides is available, as well as a few 
pertinent theoretical investigations. Matthias, Bozorth, 
and Van Vleck4 have measured the susceptibility of 
EuO. Busch, Junod, Risi, and Vogt5 have measured 
magnetization and susceptibility of the sulfide, selenide 
and telluride, and McGuire, Argyle, Shafer and Smart5 

have measured the susceptibility of these materials. The 
magnetization of EuS for various applied fields has been 
measured by Enz, Fast, van Houten, and Smit6 and 
by Argyle7; it agrees quite closely with the prediction 
of molecular field theory. The specific heat of EuS has 
been measured at low temperatures by McCollum and 
Callaway8 and over a broad temperature range by 
Moruzzi and Teaney,9 who find a pronounced X-like 
discontinuity at the Curie temperature. 

Boyd10 has made accurate NMR measurements of 
the magnetization of EuS at liquid-helium temperature, 
and Charap and Boyd10 have attempted to evaluate 
the exchange constants of this material by fitting 
spin-wave theory to the magnetization10 and specific-
heat8 data. In agreement with the spin-wave analysis 
of McCollum and Callaway,8 Charap and Boyd find a 
broad range of exchange constants to be compatible 
with the observed behavior. A particular pair of values, 

3 S. Pickart (private communication). 
3a Note added in proof. Subsequent investigations have shown 

that the cluster theory also gives the celebrated §-power law for 
the magnetization below Tc. This work will be reported in the 
1965 J. Appl. Phys. Suppl., Proceedings of the Decennial Con
ference on Magnetism and Magnetic Materials. 

4 B. T. Matthias, R. M. Bozorth, and J. H. Van Vleck, Phys. 
Rev. Letters 7, 160 (1961). 

6 G. Busch, P. Junod, M. Risi, and O. Vogt, Report of the Inter
national Conference on the Physics of Semiconductors, Exeter, 1962 
(The Institute of Physics and the Physical Society, London, 1962). 
T. R. McGuire, B. E. Argyle, M. W. Shafer, and J. S. Smart, 
J. Appl. Phys. 34, 1345 (1963). 

6 J. Enz, J. F. Fast, S. van Houten, and J. Smit, Phillips Res. 
Rept. 17, 451 (1962). 

7 B . E. Argyle (unpublished). 
8 D. C. McCollum, Jr. and J. Callaway, Phys. Rev. Letters 9, 

376 (1962). J. Callaway and D. C. McCollum, Jr., Phys. Rev. 
130, 1741 (1963). 

9 V. L. Moruzzi and D. T. Teaney, Solid State Comm. 1, 127 
(1963). 

*° S, $L Charap and E. L. Boyd, Phys. Rev. 133, A811 (1964). 

selected by Charap and Boyd as the most plausible, 
will be referred to henceforth as the "spin-wave values 
of the exchange constants of EuS." Wojtowicz11 then 
showed that these values give reasonable agreement 
with the observed high-temperature specific heat9 when 
used in his extension of the high-temperature series 
expansion. Furthermore, the suggested5 exchange con
stants of EuO are roughly consistent with those ob
tained by Calhoun and Overmeyer12 in their measure
ments of paramagnetic resonance of Eu2+ pairs in CaO 
and SrO. 

The relationship of the Curie temperature to the 
exchange constants has been studied by a Green func
tion method by Tahir-Kheli and Jarrett,13 and we shall 
find fairly close agreement with their results. 

We briefly summarize the general formulation of the 
SCH two-spin cluster approximation in Sec. 2. As an illus
tration of the method we evaluate it in Sec. 3 for nearest-
neighbor interactions, thereby obtaining the constant 
coupling approximation for general spin (which, to our 
knowledge, has not been given in the literature). Curie 
temperature, magnetization curves, susceptibility 
curves, and the spin-correlation functions are evaluated 
and given graphically. In Sec. 4 we then particularize 
the two-spin cluster approximation to nearest- and 
next-nearest-neighbor interactions and we calculate the 
Curie temperature as a function of J\ and Ji (the two 
exchange constants). We find the predicted Curie 
temperature of EuS is in excellent agreement with 
experiment7'14 if we use the exchange constants obtained 
from the low-temperature spin-wave analysis.10 Simi
larly the "paramagnetic Curie temperature" is in very 
good agreement with that obtained by extrapolation 
of the measured reciprocal susceptibility curves.5 The 
magnetization data for arbitrary applied fields6,7 and 
the susceptibility data5 above Tc can be fit closely with 
the Charap-Boyd exchange constants, although the 
number of ions in the nonstoichiometric sample here 
provides an adjustable parameter. In Sec. 5 we explore 
the sensitivity of the results to changes in J\ and J%. 
We find that there is a considerable range of values 
of Ji and J\ which produce very good and substantially 
equivalent agreement with the presently available 
experimental data. 

We conclude that the two-particle cluster approxi
mation provides a convenient and successful theory of 
the ferromagnetic europium chalcogenides throughout 
the entire temperature range. It applies as well to the 
antiferromagnetic europium chalcogenides above their 
Neel temperatures, and below their Neel temperatures 
when they are ferromagnetically aligned by an external 

11 P. J. Wojtowicz, J. Appl. Phys. 35 (Part 2), 991 (1964). 
12 B. A. Calhoun and J. Overmeyer, J. Appl. Phys. 35 (Part 2), 

898 (1964). 
13 R. A. Tahir-Kheli and H. Jarrett, Phys. Rev. 135, A1096 

(1964). 
14 P. Heller and G. B. Benedek, Phys. Rev. Letters 8, 428 

(1962); International Conference on Magnetism, Nottingham 
U. K., September, 1964 (unpublished). 
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field. Application to the antiferromagnetic phase will 
be given separately. However, the presently measured 
magnetic properties are rather insensitive to the partic
ular choice of exchange constants, provided that these 
are chosen to be consistent with the observed Curie 
temperatures. Measurement of the spin-correlation 
functions near the Curie temperature would provide a 
sensitive criterion for the choice of exchange constants. 

2. THE CLUSTER SERIES 

We briefly summarize, without proof, the structure 
of the SCH cluster expansion. As an introduction to the 
more general case we then exhibit the constant coupling 
approximation as the two-spin cluster result for nearest-
neighbor interactions. 

The Hamiltonian of the system is 

3C= -ixH D Sf-2 E A A - S y . (1) 

Strieb, Callen, and Horwitz replace the operator Sf 
by a spin-deviation operator ai^S—Sf where S is a 
parameter later to be determined variationally. They 
treat those terms that are linear in <n as the unperturbed 
portion of the Hamiltonian, expanding the free energy 
in powers of the remaining perturbation. Resummation 
of the infinite subseries of terms involving not more than 
two spins constitutes the two-spin cluster result, and 
similarly for larger clusters. After the summation to 
desired order the parameter S is determined to minimize 
the free energy. The power of the method lies to a 
considerable extent in this variation procedure, which 
corresponds to a diagrammatic vertex renormalization ; 
the "two-spin cluster" diagrams in fact contain much 
more extensive classes of "bare" diagrams, or of 
diagrams with "undressed" vertices. 

The result of the method is simply stated in terms of 
an effective one-spin unnormalized density operator pi 
defined by 

pi^expt(3(nH+2JoS)3i*l, (2) 

where /?= 1/ksT and 

Jo^ll Jij> (3) 
y 

Then SCH show that the two-spin approximation to 
the free energy is the sum of a zero-order contribution 
Fo and a term 2V arising explicitly from two-spin terms; 

F2=F0+F2', (4) 

where the zero-order contribution is 

Fo=NJoBP-p-W In tr^. (5) 

Here N is the number of spins in the system and tr4-
denotes a trace taken over the states of the single 
spin i. The two-spin correction is 

X E ln (exp{2 /3A£S r S i ->S(5 /+5 / )+S 2 ]} )o , (6) 
<*.y) 

where ( )o denotes the average taken with respect to 
the density operator pipj, 

(0)0= tr itVjQpiPj/tXitXjpiPj (7) 

and the summation in Eq. (6) ranges over all spin pairs 
in the system. £ is determined by minimization of F2 . 

To illustrate the method consider first the zero-order 
approximation. Then the free energy is given by Fo 
[Eq. (5)] above, but it remains to evaluate S by 
minimizing Fo. Evaluation of the trace in Eq. (5) is 
elementary, and minimizing with respect to S gives 

S=(l/N)(dFo/d(»H)) = (S*) 

= SBa(PnHS+20JoSB), (8) 

where Bs(x) is the Brillouin function. Thus the method 
achieves the Weiss result in zero order. 

3. NEAREST-NEIGHBOR INTERACTIONS; 
CONSTANT COUPLING 

As a second illustration we evaluate the two-spin 
result for a model in which all spins are equivalent and 
only nearest neighbors interact. Let 2J be the strength 
of the interaction between neighbors and let z be the 
number of nearest neighbors. The number of interacting 
pairs (ij) is then \Nz, and the free energy F% becomes 

-f3F2= ~ 0 - i)N In tripi 

+%Nz In tritr2 exp{20/Si-S2 

+PtnH+2(z-l)JS~](S1*+S2*)}. (9) 

To evaluate S we differentiate F2 with respect to S and 
equate to zero; the resulting equation can be written 
in the heuristically-appealing form 

tri5i*pi/tripi = tritr25i*i5i2/tritr2pi2, (10) 
where 

pi2=exp{2/3/Si-S2 

+P&H+2(z-l)jSr\(S1'+Sir)}. (11) 

Furthermore, differentiation of F2 with respect to H 
gives the magnetization as 

(S') = tr itr2Si W t r itr2pi2. (12) 

Equations (10)-(12), together with the definition (2) 
of pi, constitute the self-contained solution. The 
quantity p ^ can be looked on as an effective two-particle 
density operator, and the quantity in the square 
brackets in Eq. (11) can be viewed as an effective 
two-spin Hamiltonian. I t can, in fact, be visualized as 
the Hamiltonian corresponding to two interacting 
spins surrounded by a medium in which all other spins 
are "frozen" with SZ=S. The relation determining the 
parameter S is equivalent to the requirement [Eq. 
(10)] that the effective single-spin density operator pi 
and the effective two-spin density operator pi2 give the 
same magnetization. S is not the magnetization. 

Kasteleijn and van Kranendonk1 postulated the form 
of P12 as given in Eq. (11) on the basis of certain 
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necessary restrictions on its form for the specific case 
of spin J, plus a liberal measure of intuition. For spin 
greater than \ the constant-coupling argument is less 
clear, and although Kasteleijn and van Kranendonk 
mentioned this general case in passing, we known of no 
reference in which the method is given explicitly for 
general spin, or in which its results are described. We 
therefore believe it useful to present them here. 

The calculation of the constant-coupling equations 
(10)-(12) is most conveniently carried out by replacing 
/?/ , /3S, and t3fiH by the parameters 

= p-(3J/2 
%^e~ 

~2(3(Z-1)JS W ^ e - ^ H (13) 

whence 

where 

and 

-(3F2= - (z- 1)A7 lnZi+fWs InZw, (14) 

Z i s t n p ^ t r i f y ^ * - 1 ^ ] ^ * (15) 

Z 1 2 = tr!tr2p12= trfrilx-B^iwy) W + W ] . (16) 

The single-spin sum in Eq. (15) is identical to that 
calculated in Eq. (8), giving 

dlnZi / zS \ 
(Sz)= =SBs[ S lnw Iny 1, 

d law \ z — l / 
(17) 

whereas the two-spin traces required for Z i 2 are best 
evaluated in the spaces in which R2= (Si+S2)2 and 
Rz=- (Siz+S2

z) are diagonal : 

1 — yw R=o (yw)R 1 — {yw)~x R=ox2R ( i2+1) 
(18) 

S or y is eliminated by equating (Sz), from Eq. (17), 
to the magnetization calculated from Z\2; 

(Sz)= - K d \nZ12/d ln(yw)). (19) 

Magnetization curves for S= J, 1, §, f, f, and for z —12 
(e.g., face-centered cubic, hexagonal close-packed) have 
been calculated on the NOL-7090 computer and are 
shown in Fig. 1. 

The Curie temperature is determined by the equation 

2S 

£ar^CB+i)(2jR+l)[( 2 -1)12(12+1)-2&S'(5+1)] = 0 
R=0 

(20) 

as has been shown by Kasteleijn and van Kranendonk, 
and as we shall demonstrate in the following section. 

The scalar correlation function (Si»S2) is given by 

<Si.S2>=-
d\nF2 

d(20/)" 

1 d lnZi 

4 d ln# 
(21) 

We have also evaluated this quantity for several spin 
values, with z—12; the results are shown in Fig. 2. 

i.o, 

.9 

.0) 

.7 

.6 

I 
s 

J I L J 1 L 
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

T / T c — 

FIG. 1. Magnetization versus T/Tc for nearest-neighbor exchange 
(constant coupling), for various spin values. 

4. TWO-SPIN CLUSTER WITH FIRST- AND 
SECOND-NEIGHBOR EXCHANGE 

We now turn to a model in which all spins are crystal-
lographically equivalent and in which an exchange 
interaction exists between nearest and next-nearest 
neighbors. Let 2 / i be the strength of the nearest-
neighbor interaction, and 2/2 be the strength of the 
next-nearest-neighbor interaction. Also let Z\ and z2 be 
the numbers of such neighbors, respectively. Then 
Eq. (6) contributes \Nz\ nearest-neighbor terms and 
\~Nz2 next-nearest-neighbor terms, which, when added 
to the zero-order contribution (5), give 

~PF2= - O1+22- l)N In trjpi 
+|ATSi In tritr2p12+iNz2 In t r x t r ^ , (22) 

where 

Pi2=exp{2/5/iSi-S2 

+^H+2(z1~l)J1S+2z2J2S2(S1
z+S2

z)}, (23) 

Pi3=exp{2j8/2Si-S3 
+0£MH+2z1jJ3+2(zi- VJiSKSf+Sz')}. (24) 

Again S is determined by minimizing F2, giving the 
condition 

(z1+z2-l)J0(S*)1 = z1(Jo-J1)(S*)n 
+z2(Jo-J2)(S*)u, (25) 

where 
/ o = 2 1 / 1 + 2 : 2 / 2 , (26) 

and where 

(0>i=tr i0pi / t r ipi , <0)i2=tr1tr20p12/tr1tr2p12 (27) 

and similarly for (0) 13. 
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Equation (22) completely characterizes the two-spin 
cluster approximation, with 8 to be determined by 
Eq. (25). The simple heuristic interpretation of the 
constant-coupling approximation is not maintained in 
this more general case, although the formal simplicity 
of the method remains. In particular, it must be stressed 
that pi, pi2; and pn are purely formal, and none of these 
can be interpreted as a true density operator, as will 
become increasingly clear. 

To evaluate the results of the approximation we 
again introduce the variables 

x^e-tui/2, ==z>-/W2 X2=e~ (28) 

y^e-ZfiJlin-DS ^ y2===e-2(3J2<izz-l)$ (29) 

w=e~^H, (30) 

and the notations 

Z1=tT1p1=tr1(y1
zlf^-^y2

Z2Kz2-1)w)SlZ, (31) 

Zi2= t r i t r 2 p i2 

= trfc&^'&iwyiy***"**-1)) <SiH-s»'> y (32) 

Z i 3 = t r i t r 3 p i 3 

= tr1tr3x2~4Sl,S3(^i2l/ {zl~l)y*) ^x'+sz'). (33) 

The single-ion expectation value of S±z, which is not 
equal to the actual magnetization, is defined by 

n | l 1 1 1 I i i 1 1 1 1 1 i- I I 1 • 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 I.I 1.2 1.3 1.41.51.61.71.8 
T / T c - — 

FIG. 2. Nearest-neighbor spin correlation versus T/Tc, for 
nearest-neighbor exchange (constant coupling), for various spin 
values. 

The magnetization is 

1 dF 
< * > = -

1 d(-/3F) 

fxN m N dlnw 
(39) 

W i s W i 
dlnZi 

d Inw 
ziS 22S 

= SBS\ -S Inw lnvi lny2 \ , (34) 
2 1 - 1 z2— 1 

and the two-ion expectation values of Sz are similarly 
defined by 

1 d I11Z12 
(S')i2=i(S1'+Si')i2=-ZTrz — — , (35) 

<5«>i8=i<5i'+5 ,
8 '>i8=-

2 dln(wviV2*2/(22_1)) 

1 '<9 lnZi3 

which becomes 

(Sz) = (*i W o ) <S'>12+ (22/2//0) <5«>i«. (40) 

As we have remarked above, it is noteworthy that 
the magnetization is not given by its one-particle 
average (S*)i, nor by either of the two-particle averages 
{Sz)i2 or (Sz)n, nor is it equal to S; it is the weighted 
average of (Sz)n and (Sz)n, with the weight factors 
21/1/(21/1+22/2) and 22/2/(21/1+22/2), respectively. 

Finally, the correlation functions of nearest-neighbor 
spins and of next-nearest-neighbor spins are given by 

2 dln(wyizlKzl~Vy2) 

The two-particle partition sums are explicitly 

Xl*S(S+l) 2S Xl-2R(R+1) 

(36) (Si .S2)= 
1 d(-(3F) 

Nzi d()8/i) 

= <S1.S,>u+23{<5->-<5'>i2}, (41) 

Z12—-
1—wy±y2Z2f (22~1) R=o [wyiy2

Z2l (̂ 2—DĴ  

Xl4S(>S+l) 2S rWyiy2^Kz2-l)-\R 

E ^ r ~ (37) 
1 — [_wyiy2

Z2' ( s2 -D] - i 22=0 xx2R ( E + 1> 

a n d 

X2*S(S+l) 2S X-2R(R+1) 

z18=- — E 
1—wyiz lKzi~1)y2 R=o [_wyizlKzi~l)y2~]R 

x<£S(s+D 2s [_Wyizl^zl~^yi\R 

£ ZI7I-. • (38) 
1 — [wyxzl1 ^Z1~1)y2']~1 R= %i ?R (JB+l) 

1 d(-(3F) 

Nz2 d(pJ2) 

= <S1.S8>+2i5{<5«>-<5%}> (42) 

(Sj-Ss)- - J ( d lnZi2/a ln^i) (43) 

<Si.S3)= - i ( * InZis/d In*,). (44) 

At the Curie temperature, S vanishes. We determine 
this temperature by expanding the partition sums to 
third order in the small quantities (ji—1) and (y2— 1), 

<Si-S,>= 

where 

and 
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whence Eq. (25) becomes 

25(5+1) {z1Jl+z2J2)[_zl{z1~ l ) / i+* a(*2- 1 ) / J + W 2 ( / I + / * ) ] 

28 

£ 
R=0 

2S / 2S 

+zlz1J1+{z2-\)J2J E x2~™^R(R+l)(2R+l) / E *2-2ie(*+1)(2£+l). (45) 

It is reassuring that this condition reduces to the con
stant coupling condition Eq. (20) if we let J2=0; for 
this purpose we must also invoke the identity 

2S / 2S 

J:R(R+1K2R+1)/ E (2R+1) = 2S(S+1). 
R=Q I R=Q 

(46) 

In Fig. 3 we show kBTc/S(S+l)Ji versus J2/J1 for 
5 = | with 2i== 12 and z2= 6, appropriate to the europium 
chalcogenides. Curves for some other spin values are 
also given. For comparison, on the same figure, we show 
the Curie temperatures predicted by molecular field 
theory tkBl\=iS(S+l)J1(z1+z2J2/Ji)'] and by the 
Green function theory.13 Furthermore, for J2 = Q the 
system is a nearest-neighbor ferromagnet, which has 
been investigated15 extensively by Pade extrapolation 
of the high-temperature series; the resultant predicted 
Curie temperatures are indicated by isolated points 
in Fig. 3. 

For EuS, Charap and Boyd10 have found 

Ji/kB=0.20°K9 J2/kB=-0m°K, (47) 

by comparison of spin-wave theory with low-tempera
ture magnetization and specific-heat data. With these 

T 1 1 1 1 i 1 i 1 i i 1 1 i 1 r 

FIG. 3. Curie temperature as a function of exchange constants, 
for various spin values. The molecular field result, the Green 
function result (Ref. 13) and the Pade approximant estimates 
(Ref. 15) at J2—O are also shown. 

16 G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 (1958). 

values we find, from Fig. 3, 

rc=16.9°K. (48) 

The measurements of Argyle7 give rc=16.5°K, and 
those of Benedek and Heller14 give rc=16.52°K, 
although Moruzzi and Teaney9 have reported 
rc=16.3°K from specific-heat data. For the same 
values of exchange constants the molecular field theory 
predicts Tc=20,2°K. 

In Fig. 4 we show the theoretical reciprocal suscepti
bility in the paramagnetic region, and the experimental 
data of McGuire, Argyle, Shafer, and Smart.5 The 
theoretical calculations were carried out for J2/Ji — 0 
and —0.4, but the numerical results superpose so 
exactly that only a single curve appears in the figure. 

The l/x = 0 intercept in Fig. 4 is independent of the 
assumed g value, and we find a paramagnetic Curie 
temperature 0=17.5°K. McGuire, Argyle, Shafer, and 
Smart report 0=18°K, and McGuire and Shafer16 

later report 0= 19°K. 
The slope of the theoretical 1/x versus T curve 

depends on the assumed value of gNA, the product of 
the g factor and the number NA of Eu ions per mole of 
sample. The g factor has been independently evaluated17 

i03X7. 
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FIG. 4. The reciprocal of the susceptibility versus temperature 
for EuS. The theoretical curve applies both to J2/J1 — O and to 
J2/J1= —0.4. Experimental points from the measurements of 
McGuire, Argyle, Shafer, and Smart (Ref. 5). 

16 T. R. McQuire and M. W. Shafer, J. Appl. Phys. 35, Suppl. 
2, 984 (1964). 

17 W. Low (private communication). 
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FIG. 5. Magnetization of EuS as a function of temperature, for 
several values of applied field. Solid curves indicate theoretical 
results corresponding to the labeled values of field. Open circles 
are the measurements of Argyle (Ref. 7) for 14 kOe. All other 
data are by Enz, Fast, van Houten, and Smit (Ref. 6), for 14.3 
kOe (solid circles), for 25 kOe (squares), and for 32.1 kOe (crosses). 

by paramagnetic resonance as 1.99. However, McGuire 
informs us that the samples of EuS, on which magnetic 
measurements have been made, deviate from stoichi-
ometry. Hence NA is uncertain and the value of gNA is 
best treated as an adjustable parameter. To obtain 
agreement of the slope in Fig. 4 with the experimental 
data we have chosen a value of gNA which corresponds 
to g= 1.99 and NA/(Avogadro's number) =0.941. 

In Fig. 5 a comparison is made of experimental and 
theoretical magnetization curves for EuS, with various 
values of the applied field. 

The open circles indicate the measurements of 
Argyle7 modified for demagnetization by use of Fig. 3 
of his paper; the effective field (applied field minus 
demagnetizing field) is 14 kOe. The remaining data 
points, from Enz, Fast, van Houten, and Smit,6 for 
fields of 14.3, 25, and 32.1 kOe, have not been corrected 
for demagnetization. Such a correction would raise the 
experimental points slightly, particularly in the range 
of the Curie temperature. 

The theoretical curves are drawn with the spin-wave 
values of J\ and J2 for EuS. For nonzero field the curves 
also depend upon the assumed value of gNA, and 
the curves shown correspond to g=1.99 and NA/ 
(Avogadro's number) = 0.873. 

In Fig. 6 we show the temperature dependence of the 
nearest-neighbor and the next-nearest-neighbor corre
lation functions (Si-82) and (Si»Ss). Again the spin-
wave values of the exchange constants of EuS have 
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FIG. 6. Nearest- and next-nearest-neighbor spin correlations 
as a function of temperature, for EuS. 

been adopted, and the external field has been taken 
as zero. 

Two features of Fig. 6 are of interest. The nearest-
neighbor correlation function falls at the Curie tempera
ture to about 16% of its T=0 value, abruptly changes 
slope, and persists far into the paramagnetic region. 
This behavior is in at least qualitative agreement with 
the known high-temperature behavior of nearest-
neighbor ferromagnets, and it is in marked contrast to 
the prediction of molecular field theory. According to 
the latter theory the correlation functions fall abruptly 
to zero at Tc, being simply proportional to the square 
of the magnetization. The next-nearest-neighbor corre
lation function falls to a negative value at Tc, abruptly 
changes slope, and again persists far into the para
magnetic region. This negative correlation, mediated of 
course by the negative value of J2, is a novel and 
interesting feature which might well be observable 
experimentally, particularly in EuSe in which J2/J1 is 
more negative. 

The magnetic contribution to the specific heat is 
given by 

d d 
c= -NzJx—(SvS2)~Nz2J2—<Si-S«>. (49) 

dT dT 

This quantity has been measured at low temperatures 
by McCollum and Callaway,8 and over a broad tern-
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FIG. 7. Magnetic specific heat of EuS as a function of tempera
ture. Dashed curve from the measurements of Moruzzi and 
Teaney (Ref. 9), solid curve theoretical with / I / & B = 0 .2°K, 
/2 / fo=-0 .08°K. 

perature range by Moruzzi and Teaney.9 In Fig. 7 we 
show a comparison between theory and experiment. 
The dashed curve is taken from Moruzzi and Teaney, 
who have subtracted the lattice contribution to the 
specific heat by means of the Debye theory. The solid 
curve is the theoretical specific heat using the spin-wave 
values of the exchange constants for EuS, and taking 
the derivatives of the correlation functions from Fig. 6; 
there are no adjustable constants. While our calculated 
specific heat is in accurate agreement with experiment 

FIG. 8. Magnetization as a function of T/TC} for various values 
of Ji/Ji. The molecular field result (the Brillouin function) is also 
shown for comparison. 

in the ferromagnetic region, above the Curie tempera
ture it is only about half of the observed value, or of 
that calculated by Wojtowicz,11 who has extended the 
Rushbrooke and Wood high-temperature power series 
to include next-neighbor interactions. 

5. EFFECT OF VARIATION OF 
EXCHANGE CONSTANTS 

In evaluating the theory above we have calculated 
magnetization curves and correlation functions for 
EuS, using the spin-wave values of J\ and J<L. I t is of 
interest to explore the sensitivity of these curves to 
changes in the J2/J1 ratio. 

In Fig. 8 we show magnetization curves for zero field 
as a function of T/Tc, plotted for several values of 
J2/J1- All the curves are quite close together, the 
J2/J1—O curve lying lowest. Although the curves for 
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FIG. 9. Magnetization at the Curie temperature as a function 
of / 2 / / 1 , for an applied field of 14 kOe. 

both negative and positive J2/J1 lie slightly above the 
J2/Ji = 0 cuive. we show only those for J V / i = 0 , 0.4 
and 0.8, for clarity. The molecular field result (the 
Brillouin function) is also shown in Fig. 8, and it is seen 
that the two-spin cluster theory and molecular field 
theory are in rather close agreement for the 
magnetization.18 

The insensitivity of the zero-field magnetization 
curves to J2/J1, as observed in Fig. 8, precludes the 
determination of J2/J1 on the basis of this type of data. 

Turning to magnetization data in the presence of 
applied fields, in Fig. 9 we show the magnetization at 
the Curie temperature as a function of J2/J1, for an 

18 Although the two-spin cluster curves for the magnetization 
are slightly more "square" than the molecular field curve, this 
deviation does not appear to be large enough to account for the 
squareness observed in many ferrimagnets and antiferromagnets 
[cf. D. S. Rodbell, I. S. Jacobs, J. Owen, and E. A. Harris, 
Phys. Rev. Letters 11, 10 (1963)]. 
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applied field of 14 kOe. In this curve we have taken 
g=2 and assumed perfect stoichiometry. The field of 
14 kOe has been selected for comparison with the data 
of Argyle, whose value is shown on Fig. 9 (and given in 
detail in Fig. 5). We find that at this field, as in zero 
field, the magnetization is lowest if J2/Ji=0; the rise 
is more rapid for negative J2/J1 than for positive J2/J1, 
and the minimum is rather broad. The experimental 
value lies close to this minimum. Thus magnetization 
data at 14 kOe merely indicates that J2/J1 is in the 
vicinity of zero, but is again rather insensitive to J2/J1 
in this region. To illustrate the type of agreement to 
be obtained we show, in Fig. 10, magnetization curves 
for JV&jB = Q.146°K, / 2 = 0 , g = 2 , and perfect stoichi-
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FIG. 10. Magnetization of EuS as a function of temperature. 
Theoretical curve with / i / f o = 0.146°K, / 2 = 0 , g — 2, and perfect 
stoichiometry. Experimental points as in Fig. 5. 

ometry. These exchange constants would predict a 
Curie temperature of 16.6°K. 

Perhaps the properties most sensitive to the J2/J1 
ratio are the spin-correlation functions. These are shown 
in Fig. 11 as functions of T/Tc for various values of 
J2/J1. The negative value of (Si-83) at Te, noted 
previously in Fig. 6, vanishes at J2/Ji=0 and becomes 
positive for J2/J1X). Conversely, the nearest-neighbor 
correlation function at Te, fairly large at J2/Ji= —0.4, 
decreases as J2/J1 increases. 

The inverse behavior of the first- and second-neighbor 
correlation function results in a relative insensitivity of 
the magnetic energy, 

UM= - ^ 1 / 1 ( S 1 . S 2 ) - ^ 2 / 2 ( S 1 . S 3 ) , 
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FIG. 11. Nearest- and next-nearest-neighbor spin correlations as 
a function of temperature, for various values of J2/J1. For each 
value of J2/J1 the value of J\ is adjusted to give r c=16.6°K. 

to the ratio J2IJ\- In fact for values of J2/Ji=0.8r 0.4, 
0.0, and —0.4 the magnetic energies at the Curie tem
peratures stand in the ratios 1.04, 1.02, 1.00, and 0.997, 
respectively. These differences all lie within the experi
mental error. Similarly the specific heat, being the 
derivative of the energy, is extremely insensitive 
to J2/J1. 

We conclude that the single-spin effects, such as 
magnetization and susceptibility, are rather insensitive 
to J2/J1 (when Ji is chosen to give the proper Tc). 
Similarly the magnetic energy and specific heat are 
insensitive because of the compensatory variations of 
the first- and second-neighbor correlations. The corre
lation functions themselves are quite sensitive, par
ticularly in the neighborhood of the Curie temperature. 
A direct measurement of the correlation functions would 
provide the most reliable criterion for the evaluation of 
the exchange constants. 
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